ORIGINAL ARTICLE

Piotr Hadaczek · Jacek Podolski Aleksandra Toloczko · Grzegorz Kurzawski Andrzej Sikorski · Pamela Rabbitts · Kay Huebner Jan Lubinski

Losses at 3p common deletion sites in subtypes of kidney tumours: histopathological correlations

Received: 12 March 1996 / Accepted: 26 April 1996

Abstract Deletions of the short arm of chromosome 3 (3p) have been recognized as characteristic features of clear cell renal cell carcinomas (clear cell RCC). We analysed 55 clear-cell RCCs and 30 non-clear-cell kidney tumours (10 papillary and 7 chromophobic RCCs, 11 oncocytomas and 2 collecting duct carcinomas) in loss of heterozygosity (LOH) studies using microsatellite markers for previously observed regions of common deletions on 3p in kidney tumours (3p25, 3p21.3, 3p14.2 and 3p12-13). Alterations were found in all 55 cases of clearcell RCCs at two to four of the 3p regions. Extensive losses were not found in non-clear-cell tumours except for collecting duct carcinomas; 1 of 10 papillary RCCs showed interstitial deletion limited to a single 3p21.3 locus. LOH analyses using microsatellite markers for regions of common deletions at 3p may be of value in differential diagnosis of kidney tumours.

Key words Kidney tumour classification \cdot 3p \cdot Loss of heterozygosity

Introduction

Renal tumours comprise a spectrum of phenotypically and biologically diverse entities, and the distinction between histopathological subtypes such as clear-cell,

P. Hadaczek (\boxtimes) · J. Podolski · A. Toloczko · G. Kurzawski J. Lubinski

Department of Genetics and Pathology,

Pomeranian Medical Academy, Al. Powstańców Wlkp. 72, PL-70-111 Szczecin, Poland Tel./Fax: (48) 91-828-450

A Sikoreki

Department of Urology, Pomeranian Medical Academy, Al. Powstańców Wlkp. 72, PL-70-111 Szczecin, Poland

P. Rabbitts

MRC Clinical Oncology and Radiotherapeutics Unit, Medical Research Council Centre, Hills Road, Cambridge CB2 2QH, UK

K. Huebner

Jefferson Cancer Institute, Jefferson Medical College, Philadelphia, PA 19107, USA chromophobic, papillary, sarcomatoid, collecting duct carcinomas and oncocytomas is clinically important. In some cases differential diagnosis can be difficult at the light microscopic level, and it has been suggested that analyses of 3p deletions might be useful in diagnosis. The question of specificity of 3p abnormalities for particular subtypes of renal cell carcinomas (RCC) remains unresolved, although it has been reported that 3p losses are characteristic for clear-cell renal carcinomas [15, 16, 22, 23].

Chromosome 3p loss has been observed in most cases of clear-cell RCC [1, 2, 8, 12, 13, 15, 16, 21–23, 25]. However, in the majority of large series of tumours of this type examined there is always a group of up to 40% of cases in which 3p abnormalities cannot be detected by cytogenetics or loss of heterozygosity (LOH) studies. This may be because not all clear-cell RCCs exhibit 3p losses, because an insufficient density of markers was used to detect small deletions, or because the location of the markers was inappropriate. The probability of detection of losses is highest when markers of common deletion sites are used.

Recently, these regions were delineated in kidney tumours by LOH studies using highly polymorphic microsatellite markers, which improves the possibility of finding 3p losses. Common losses in RCC have been described and delineated at 3p25 (von Hippel-Lindau gene) [5, 7], 3p21 [21, 25], 3p14.2 [region of t(3;8) translocation associated with familial RCC] [5, 12, 21] and 3p12–13 region [12].

In the present study, 55 clear-cell RCCs and 30 nonclear-cell kidney tumours were analysed by LOH studies using microsatellite markers for the aforementioned regions of common deletions on 3p.

Materials and methods

Samples and DNA extraction

Samples of kidney tumours were obtained from 85 patients immediately after radical nephrectomy (55 clear-cell RCCs, 10 papillary RCCs, 7 chromophobic RCCs, 11 oncocytomas and 2 collecting

 Table 1
 Clinicopathological

 findings for kidney tumours

a According to the method of)f
Thoenes et al. [20]	
b According to the method of	ρf
Robson et al. [17]	

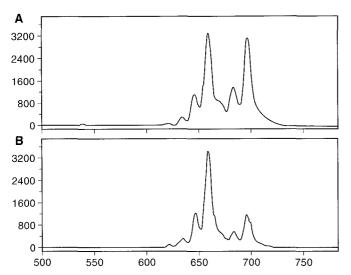
c Not graded

Table 2 Markers used for detection of common deletions at 3p. * Primers labelled with 6-EAM

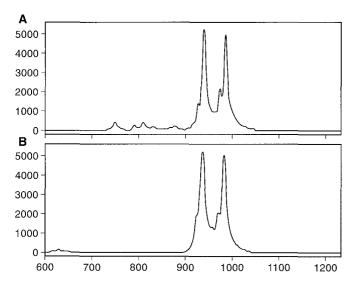
Histological type	Total number	Gradea			Stageb	
		I	II	Ш	A	B-D
Clear cell RCC	55	19	17	19	27	28
Papillary cell RCC	10	2	8		10	_
Chromophobic RCC	7	3	4	_	6	1
Oncocytoma	11°	_	-	_	11	_
Collecting duct carcinoma	2	_		2	_	2

Marker and its chromosomal position	Primer sequences	PCR conditions
D3S1435 (3p25)	A: 5' TGGATACATTAGTATACTGAATT 3' B: 5'*TTAGACGGAAGCAAGGAAGG 3'	94°C, 1 min 58°C, 1 min 72°C, 2 min
		25 cycles
D3S1038 (3p25)	A: 5' TCCAGTAAGAGGCTTCCTAG 3'	94 ⁰ C, 1 min 58 ⁰ C, 1 min
	B: 5'*AAAGGGGTTCAGGAAACCTG 3'	72°C, 1 min 23 cycles
D3S643	A: 5' GACAGAACTGCCAAACCATCCCAC 3'	94°C, 1 min 58°C, 1 min
(3p21.3)	B: 5'*TATGTGCTCCAGGCTGGGTAACAG 3'	72°C, 1 min 23 cycles
D3S1295	A: 5' ATTTTATAAGTTTTGATACCCACCC 3'	94°C, 1 min 58°C, 1 min
(3p21.1)		72°C, 2 min
D3S1481	A: 5' ATTATACCTCTTTGTAGC 3'	94 ⁰ C, 1 min 48 ⁰ C, 1 min
(3p14.2)	B: 5'*GATGAATATTGTTAGTCC 3'	72°C, 1 min 23 cycles
D3S1284	A: 5' GCCTTGGGGGTAAATACTCT 3'	94 ⁰ C, 1 min 58 ⁰ C, 1 min
(3p14.1)	B: 5'*GGAATTACAGGCCACTGCTC 3'	72°C, 2 min 24 cycles
D3S1274 (3p13)	A: 5' TTATACATCAGTCTCTGGGAAACAC 3'	94°C, 1 min 55°C, 1 min
	B: 5'*TACTGTGCATATAGGTTCCTGTGA 3'	24 cycles

duct carcinomas); histological type, grading and staging for all cases studied are summarized in Table 1. Tumours were carefully dissected on visual inspection to eliminate inclusion of normal tissue before preparation of DNA. Fresh normal kidney tissue from the same patients was also obtained. The tissues were frozen in liquid nitrogen and stored at –80°C. Genomic DNA was extracted according to a standard method involving incubation with proteinase K, phenol/chlorophorm extraction and ethanol precipitation [11].


Primers and polymerase chain reaction

Assessment of allelic deletions by LOH analysis was determined by means of primers that amplify polymorphic microsatellite-containing alleles located within or close to regions of common deletions at 3p [14, 18]. D3S1435 and D3S1038 at 3p25, D3S643 at 3p21.3, D3S1295 and D3S1481 at 3p14.2–21.1, D3S1274 and D3S1284 at 3p13-14.1 were amplified in each normal/tumour DNA pair, and retention or loss of heterozygosity was assessed by comparison of alleles in normal and tumour DNA after polyacrylamide gel separation. Map position and order of the markers were


established on the basis of data obtained from the Genome Data Base (Johns Hopkins University) and the Human Cooperative Linkage Center Database and confirmed, where possible, by analysis of a panel of rodent-human hybrids containing portions of 3p [10]. Primer sequences and PCR conditions for individual primer pairs were also obtained from the Genome Data Base. Primers were synthesized on a Model 391 DNA Synthesizer (Applied Biosystems), and one primer in each pair was fluorescently labelled with 6-FAM (Applied Biosystems). The target DNA sequences were amplified by PCR in 12.5 μl final volume containing 1 × Taq buffer (Stratagene); 12.5 pmol of each primer (one fluorescent); 50 µM each of dATP, dCTP, dGTP, and dTTP; 0.5 U Taq polymerase (Stratagene) and 25-30 ng of sample DNA. Reactions were overlaid with mineral oil and the DNA amplified in a thermal cycler (model 480, Perkin Elmer). The cycle number was optimized for each marker to ensure subsaturation PCR conditions (see Table 2).

Polyacrylamide gel electrophoresis

PCR products were analysed on 6% polyacrylamide (Ready Mix DNA/PAGE, Pharmacia) denaturating gels in 1 × TBE buffer in a

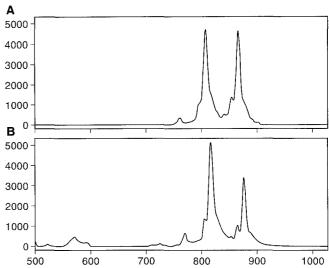
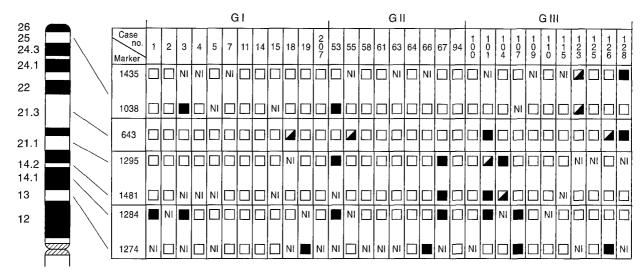


Fig. 1A, B Electrophoretogram of case 101 for marker D3S1038 (3p25). **A** Normal DNA; **B** cancer DNA. An indication of loss of the larger allele in the tumour DNA can be seen from the decrease in height of the peak. Calculation of the allele ratio in this example gives a value of 0.34, which confirms complete loss of heterozygosity (LOH). Scan number in 373A sequencer as a measurement of electrophoretic mobility of PCR products is plotted along the *x*-axis; fluorescent signal (fu) as a measurement of fluorescence intensity of PCR products on the *y*-axis

Fig. 2A, B Electrophoretogram of case 101 for marker D3S643 (3p21.3). **A** Normal DNA; **B** cancer DNA. The heights of the peaks referring to both alleles in tumour are similar. Calculation of the allele ratio in this axample gives a value of 0.97, which confirms retention of heterozygosity. *x*-Axis scan number; *y*-axis fluorescent signal (fu)

Model 373A automated DNA sequencer (Applied Biosystems), and 1 μ l of each PCR reaction mixture was combined with 3 μ l deionized formamide. This mix was denaturated for 5 min at 90°C and, after ice-cooling, 2.5 μ l was loaded on the gel. Electrophoresis was for 4 h at 800 V (30 W) and 25°C. During electrophoresis, the fluorescence detected in the laser scanning region was collected and automatically analysed with the GeneScan software (Applied Biosystems).

Fig. 3A, B Electrophoretogram of case 101 for marker D3S1295 (3p21.1). **A** Normal DNA; **B** cancer DNA. An indication of loss of the larger allele in the tumour DNA can be seen from the decrease in height of the peak. Calculation of the allele ratio in this example gives a value of 0.7, from which we assumed a partial LOH. *x*-Axis scan number; *y*-Axis fluorescent signal (fu)


Calculation of allele ratios

The locus was scored as homozygous when one fluorescent peak was seen in the normal DNA sample. Two peaks were observed when the sample was heterozygous for a marker. The values given for the ratio of peak heights of the two alleles in the paired normal and tumour samples, calculated according to Cawkwell [3], were used to assign a figure for allele loss. In cases showing alterations, PCR analyses were repeated 2 or 3 times. Ratios of 1.00–0.80 for alleles in tumour DNAs were interpreted as retention of heterozygosity, ratios of 0.79–0.51 as partial loss of heterozygosity ("partial deletions") and ratios below 0.51 as complete loss of heterozygosity (see Figs. 1–3 for illustration of fluorescent detection of marker alleles).

Results

In clear-cell RCC, losses within previously identified common regions of deletions at 3p25, 3p21.3, 3p14.2–21.1 and 3p13–14.1 were detected in all 55 cases (for examples of data, see Figs. 1–3, and for summary of data see Fig. 4). Partial deletions were found with markers for 3p25 (case 123); for 3p21.3 (cases 16, 18, 55, 126); and for 3p14.2–21.1 (cases 16, 101, 104, 127). Other loci in these tumours suffered complete loss, as represented by reduction of intensity of one tumour allele by greater than 50%.

Alterations were always observed in at least two of the chromosome regions. In 24 cases we found deletions in all four regions. Losses within 3 and 2 regions (including cases for which one or two of the markers at other loci were non-informative) were detected in 20 and 12 clear-cell tumours, respectively (data not shown).

Fig. 4 3p LOH in clear-cell RCCs heterozygous for loci in all four studied regions: ■ Retention of heterozygosity, partial LOH (signal of one allele reduced in tumor by >20>50%), □ complete LOH (signal of one allele reduced in tumor by >50%), NI non-informative

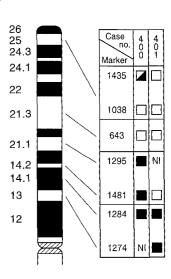
Table 3 Number of clear-cell RCCs with two, three or four deleted regions in relation to clinicopathological findings

Classification	LOSS ^a					
	2 regions	3 regions	4 regions			
Grade						
I	1	2	9			
II	2	_	7			
III	_	3	8			
a.						
Stage A	2	2	1.1			
	2	3	11			
B–D	1	2	13			

^a Tabulation includes only cases of clear-cell RCC that exhibited heterozygosity at loci within all four regions

Heterozygosity at all of the four regions was observed in 32, cases as illustrated in Fig. 4. In this group, deletions occurred at two regions in 3 tumours (cases 3, 53, 67) and at three regions in 5 (cases 1, 19, 101, 107, 128). Losses limited to 3p21.3 and 3p25 were detected in cases 53 and 67. In case 3, deletions were found only with markers for 3p21.3 and 3p14.2-21.1. Among cases showing losses at three regions while retaining the fourth, alterations occurred at 3p25, 3p21.3 and 3p14.2-21.1 in 3 cases (1, 104, 107) or at 3p25, 3p14.2-21.1 and 3p13-14.1 in 2 cases (101, 128). Frequencies of clear RCCs with two, three and four deleted regions relative to the number of cases and clinicopathological findings are displayed in Table 3. From this summary, it appears that the number of deleted regions in particular cases is not correlated with tumour grade or stage.

None of the 7 chromophobic carcinomas and 11 oncocytomas studied showed 3p deletions. Similar re-


sults were obtained in 10 papillary tumours with 1 exception, a case with an apparent interstitial deletion limited to the 3p21.3 region (data not shown).

In both collecting duct carcinomas, losses occurred at 3p25 and 3p21.3; in one of them an additional deletion was detected with marker 1481 at 3p14.2, as summarized in Fig. 5.

Discussion

It has been recognized that accumulation of genomic abnormalities, including losses of tumour suppressor genes, is a crucial event in carcinogenesis [24]. Deletions of 3p have been found to be a characteristic feature of clear-cell RCC [1, 2, 8, 12, 13, 15, 16, 21–23, 25], but we suggest that even more characteristic of this type of tumour is the accumulation of 3p losses. Using highly polymorphic microsatellites, we found alterations in 100% of clear-cell RCCs in at least two of the four regions of 3p for which common allele losses have previously been described for kidney and other tumour types. Accumulations of losses were not found in non-clear-cell tumours except for collecting duct carcinomas.

Fig. 5 3p LOH in cases of collecting duct carcinoma. Symbols as for Fig. 4

Our results indicate that clear-cell kidney tumours require accumulation of alterations in two or more of any of the target genes within the regions of common deletions at 3p25, 3p21.3, 3p14.1–21.1 or 3p12-13. No doubt the *VHL* gene is the target of 3p25 loss [5, 7], but the other target genes have not yet been identified. The probability of involvement of particular loci does not seem to be significantly different. The order in which the specific loci are lost or altered is variable, as suggested by analyses of cases in which some regions are not deleted or show only partial LOH.

Those tumours in which complete LOH was observed are likely to be clonal. Partial LOH was found with some markers in a few tumours, and it seems that this finding is not the result of admixture of normal cells with the tumour cells, because we found complete LOH with some markers in the same DNA samples and only partial LOH using other probes. Working under PCR subsaturation conditions and using the GeneScan system, which can detect quantitative changes in signal intensity objectively, we found that results of LOH analyses were highly reproducible. Additionally, on histological slides made from the same parts of the tumour as DNA had been isolated from we found no more than 5–10% of normal cells. Partial LOH can thus be interpreted as the occurrence of 3p abnormalities in subclones of malignant cells.

The observed losses may result from interstitial deletions or allelic losses of large portions of chromosomal arms. The pathogenesis of kidney tumours at the molecular level certainly merits further investigation, but whatever the mechanism of observed alterations the most interesting point from the diagnostic point of view is that the range of 3p abnormalities detected by LOH is very characteristic for clear-cell RCC.

Collecting duct carcinomas also showed extensive 3p losses in both cases studied. However, our results are not in agreement with others reported. Deletions of 3p were not detected by LOH analysis in two cases studied by El-Naggar [4] and 3p alterations were not observed cytogenetically in three cases described by Füzesi [6].

The published data on chromophobic carcinoma are not consistent. Van den Berg et al. studied two such tumours, and no 3p deletions were found [21, 23], which is in agreement with our results. Kovacs et al., however, reported loss of constitutional heterozygosity at 3p in five of nine chromophobic tumours [9].

In 1 of 10 papillary carcinomas in our series we found an isolated loss at a single locus. This is in agreement with data in the literature; interstitial deletions at single loci, rather than more extensive 3p alterations, were previously reported not only on clear-cell carcinomas but also in exceptional cases of papillary tumours [16, 21] and oncocytomas [16, 19, 21].

In summary, extensive allelic losses in 3p25, 3p21.3, 3p14.2 and/or 3p13-14.1 regions seem to be characteristic for clear-cell carcinomas. LOH analyses using microsatellite markers for regions of common deletions at 3p might be of value in the differential diagnosis of kidney

tumours. The practical diagnostic utility of our findings should be confirmed by studies of larger series of clearand non-clear-cell tumours, including cases that are difficult to diagnose at the light microscopic level.

Acknowledgements This work was supported by US-Poland MCSJF II grant MZ/HHS-91-75, USPHS Grant CA51083, Polish National Scientific Committee grant 408899101, European Communities Joint Research Programme no. 8316.

References

- Anglard P, Tory K, Brauch H, Weiss GH, Latif F, Merino MJ, Lerman MI, Zbar B, Linehan WM (1991) Molecular analysis of genetic changes in the origin and development of renal cell carcinoma. Cancer Res 51:1071–1077
- Anglard P, Trahan E, Liu S, Latif F, Merino MJ, Lerman MI, Zbar B, Linehan WM (1992) Molecular characterization of human renal cell carcinoma cell lines. Cancer Res 52: 348– 356
- Cawkwell L, Bell SM, Lewis FA, Dixon MF, Taylor GR, Quirke P (1993) Rapid detection of allele loss in colorectal tumours using microsatellites and fluorescent DNA technology. Br J Cancer 67:1262–1267
- El-Naggar A, Batsakis J, Wang G, Lee M-S (1993) PCR-based RFLP screening of the commonly deleted 3p loci in renal cortical neoplasms. Diagn Mol Pathol 2:269–276
- Foster K, Prowse A, Berg A van den, Fleming S, Hulsbeek MMF, Crossey PA, Richards FM, Cairns P, Affara NA, Ferguson-Smith MA, Buys CHCM, Maher ER (1994) Somatic mutations of the von Hippel-Lindau disease tumour suppressor gene in nonfamilial clear-cell renal carcinoma. Hum Mol Genet 3:2169–2173
- Füzesi L, Cober M, Mittermayer C (1992) Collecting duct carcinoma: cytogenetic characterization. Histopathology 21:155– 160
- Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, Latif F, Liu S, Chen F, Duh F-M, Lubensky I, Duan DR, Florence C, Pozzatti R, Walther MM, Bander NH, Grossman HB, Brauch H, Pomer S, Brooks JD, Issacs WB, Lerman MI, Zbar B, Linehan WM (1994) Mutations of the VHL tumour suppressor gene in renal carcinoma. Nat Genet 7:85–90
- Kovacs G, Erlandsson R, Boldog F, Ingvarsson S, Muller-Brechlin R, Klein G, Sumegi J (1988) Consistent chromosome 3p deletion and loss of heterozygosity in renal cell carcinoma. Proc Natl Acad Sci USA 85:1571–1575
- Kovacs A, Störkel S, Thoenes W, Kovacs G (1992) Mitochondrial and chromosomal DNA alterations in human chromophobe renal cell carcinoma. J Pathol (Lond) 167:273–277
- LaForgia S, Lasota J, Latif F, Boghosian-Sell L, Kastury K, Ohta M, Druck T, Atchison L, Cannizzaro L, Barnea G, Schlesinger J, Modi W, Kuzmin I, Tory K, Zbar B, Croce CM, Lerman M, Huebner K (1993) Detailed genetic and physical map of the 3p chromosome region surrounding the familial RCC chromosome translocation, t(3;8)(p14.2;q24.1). Cancer Res 53:3118–3124
- Lubinski J, Chosia M, Kotanska K, Huebner K (1988) Genotypic analysis of DNA isolated from fine needle aspiration biopsies. Anal Quant Cytol Histol 10:383–390
- Lubinski J, Hadaczek P, Podolski J, Toloczko A, Sikorski A, McCue P, Druck T, Huebner K (1994) Common regions of deletion in chromosome regions 3p12 and 3p14.2 in primary clear-cell renal carcinomas. Cancer Res 54:3710–3713
- Morita R, Ishikawa J, Tsutsumi M, Hikiji K, Tsukada Y, Kamidono S, Maeda S, Nakamura Y (1991) Allelotype of renal cell carcinoma. Cancer Res 51:820–823
- Naylor S, Buys CHCM, Carritt B (1994) Report of the Fourth International Workshop on Human Chromosome 3 Mapping. Cytogenet Cell Genet 65:1–50

- Ogawa O, Kakehi Y, Ogawa K, Koshiba M, Sugiyama T, Yoshida O (1991) Allelic loss at chromosome 3p characterizes clear-cell phenotype renal cell carcinoma. Cancer Res 51: 949–953
- Presti J, Reuter V, Cordon-Cordo C, Mazumdar M, Fair WR, Jhanwar SC (1993) Allelic deletions in renal tumours: histopathological correlations. Cancer Res 53:5780–5783
- Robson C, Churchil B, Anderson W (1969) The results of radical nephrectomy for renal cell carcinomas. J Urol 101: 297–301
- 18. Roche J, Whisenant E, Boldog F, Loeb D, Vance JM, Drabkin H (1994) Dinucleotide repeats flanking the renal cell carcinoma breakpoint at 3p14.2. Hum Mol Genet 3:215
- 19. Tallini G (1994) Analysis of nuclear and mitochondrial DNA alterations in thyroid and renal oncocytic tumour. Cytogenet Cell Genet 66:250–259
- 20. Thoenes W, Störkel S, Rumpelt H (1986) Histopathology and classification of renal cell tumours (adenomas, oncocytomas and carcinomas): the basic cytological and histopathological elements and their use for diagnosis. Pathol Res Pract 181:125–143

- 21. Van den Berg A, Hulsbeek MMF, Jong D de, Kok K, Veldhuis PMJF, Roche J, Buys CHCM (1996) Major role for a 3p21 region and lack of involvement of the t(3;8) breakpoint region in the development of renal cell carcinoma suggested by loss of heterozygosity analysis. Genes Chromosom Cancer 15:64–72
- 22. Van den Berg E, Hout A van der, Oosterhuis J, Störkel S, Dijkhuizen T, Dam A, Zweers HMM, Mensink HJA, Buys CHCM, Jong B de (1993) Cytogenetics analysis of epithelial renal-cell tumours: relationship with a new histopathological classification. Int J Cancer 55:223–227
- 23. Van der Hout AH, Berg E van den, Vlies P van der, Dijkhuizen T, Störkel S, Oosterhuis JW, Jong B de, Buys CHCM (1993) Loss of heterozygosity at the short arm of chromosome 3 in renal-cell cancer correlates with the cytological tumour type. Int J Cancer 53:353–357
- Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, Leppert M, Nakamura Y, White R, Smits AMM, Bos JL (1988) Genetic alterations during colorectal-tumour development. N Engl J Med 319:525–532
- 25. Yamakawa K, Morita R, Takahashi E, Hori T, Ishikawa J, Nakamura Y (1991) A detailed deletion mapping of the short arm of chromosome 3 in sporadic renal cell carcinoma. Cancer Res 51:4707–4711